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ABSTRACT  
High resolution imaging with a narrowband radar offers a promising technology response to the challenge 
of electromagnetic spectrum congestion in which radar operation is losing more and more of the allocated 
spectrum to mobile communication networks. In this solution space, radar tomography, which exploits the 
spatial diversity of a system, is a key signal processing paradigm. Doppler radar tomography (DRT) is a 
special form of radar tomography where Doppler processing on a single-frequency (or ultra-narrowband) 
signal provides a simple yet critical tool for cross ranging; this work takes DRT to the next level, in the 
context of the slow-time k-space. 

The slow-time k-space is a novel form of the spatial frequency space generated by the relative rotational 
motion of a target, at a single radar frequency; such a space can be exploited for high-resolution target 
imaging by a narrowband radar. The paper presents a brief theory of the slow-time k-space in the context of 
Doppler tomography, describes its useful characteristics of augmentability for wider supports; the wider a k-
space support, the higher the resulting image resolution.  

Well-known techniques in compressive sensing, such as orthogonal matching pursuit (OMP), can be 
efficiently used for the augmentation of a slow-time k-space. Assuming that any translational (bulk) motion is 
well compensated prior to this processing, the dictionary we use with OMP processing consists of simple 
quadratic chirp functions which can model the rotational motion of a target. The parameter space defining 
the dictionary is thus limited to two dimensions, allowing a manageable size of the dictionary and hence 
reasonable computational cost. 

The paper describes a demonstration of the OMP-based slow-time k-space augmentation using experimental 
radar data. Phenomena associated with electromagnetic scattering in real targets, such as ‘creeping waves’, 
are observed and discussed in relation to this proposed technique. Other possible applications are also 
briefly mentioned. 

1.0 INTRODUCTION 

Tomography is a general imaging technique that is based on lower-dimensional measurements or projections 
of an object at a range of different spatial aspects, which are then processed using the projection-slice 
theorem [1] to reconstruct an image of the object. Radar tomography uses reflective scattering 
phenomenology and radar waveforms for the measurements, which may be wideband or narrowband. 
Wideband waveforms represent spectral diversity – one of the system resources for radar imaging and 
probably the most exploited resource in practical applications in the last few decades. The well-known 
synthetic aperture radar (SAR) and inverse SAR (ISAR) imaging techniques may be described as two special 
forms of wideband tomography, in which another system resource – spatial diversity – is exploited only 
minimally [2]. Range-Doppler ISAR imaging and stripmap SAR in particular typically involve aspect angle 
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changes of a few degrees [3–5]. This constraint to small rotation angles in the linear phase regimes allows 
the image inversion processing to take advantage of the computationally efficient fast Fourier transform 
(FFT), and to avoid the need for signal interpolation onto rectangular grids. 

Spotlight SAR makes use of wider angles [6,7], while circular SAR [8] may coherently process up to a 
complete cycle of target aspect rotation, with sophisticated and precise motion compensation in the range 
dimension. More notably, in the associated spatial frequency spaces, also known as k-spaces [2], traditionally 
intensive interpolation processing prior to image inversion processing may be necessary. Nevertheless, these 
forms of SAR and ISAR may be described as belonging to the category of ‘wideband radar tomography’. 

Radar tomographic imaging with ultra-narrowband or single-frequency waveforms relies on spatial diversity 
as the only system resource for image formation. Spatial diversity may be realized by: (i) having a radar with 
multiple receivers looking at the target from diverse angular locations, the received signals from which are 
processed coherently, or (ii) using a single receiver looking at a target undergoing relative rotational motion, 
i.e. changing target aspect. Both cases widen the angular extents of the measurement support of the received 
signal in the associated k-spaces. 

As discussed in [2], narrowband radar tomography can be most effectively formulated in the slow-time k-
space in conjunction with the classical Doppler processing and Doppler radar tomography (DRT) [9,10]. The 
DRT algorithm applies the projection-slice theorem in which the inputs as target’s cross-range projections 
are formed from Doppler profiles. The slow-time k-space is not only convenient for describing the DRT 
algorithm, it is also a natural tool to formulate high-resolution DRT imaging with an augmentation of its 
measurement support. How k-space augmentation may be achieved is the subject of the current work; it is 
sufficient to mention briefly here that augmentation is the process of significantly enlarging the support of 
the slow-time k-space by using longer CPIs in the DRT algorithm and correcting for nonlinear phase effects 
due to strong rotational motion. This ‘augmentability’ is a unique characteristics of the slow-time k-space. 

Slow-time k-space augmentation can be achieved by a combination of the more traditional techniques of 
fractional Fourier transform and the S-method, as described in [10]; the current work extends to the more 
modern technique of orthogonal matching pursuit (OMP) of compressive sensing. The main contribution of 
the paper is two-fold: to highlight the augmentability of the slow-time k-space as a key characteristic for 
narrowband radar imaging, and to present a novel application of the OMP technique to such augmentation 
processing. 

The rest of paper is organized as follows. The next Section summarizes the fundamental theory: system 
geometry and signal model, cross-range bandwidth and resolution, and DRT. Section III describes the slow-
time k-space and its augmentation with OMP processing. Section IV describes an experimental setup and 
imaging results for both standard and augmented DRT processing. The final Section presents some relevant 
discussion points and concluding remarks. 

2.0 BACKGROUND 

This Section defines the signal model and summarizes the known theory of Doppler radar tomography 
(DRT). 

2.1 Signal Model 
We assume the usual point-scatterer target model; a typical system geometry is illustrated in Fig.1, with a 
monostatic radar illuminating a target. As usual in target imaging literature, an inertial local target reference 
frame, denoted as  with origin at the target’s nominal centre of rotation, can be chosen to have the x axis 
being the cross-range axis, while the y axis (the ‘down-range axis’) aligned with the radar line of sight 
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(LOS). The plane (x, y) is sometimes known as the image projection plane (the IPP, or simply ‘image 
plane’). The third axis for ‘height’, z, is orthogonal to the image plane and points along the target’s effective 
rotation vector  Ωe which is a component of the target’s total rotational velocity vector Ω along this axis. 

 

Figure 1: Imaging system geometry: The  coordinates define the local target frame, . 
Only one scatterer of the target is shown at , which rotates around origin O with velocity . 

By definition of Tx, 

  (1) 

Component  has no contribution to radar imaging, while  is what makes motion-based target imaging 
possible. Both of these components and the orientation of the IPP itself, are generally unknown a priori. In 
this paper, we restrict our consideration to target imaging in 2D only, and hence will assume further that 

, and  is at least approximately constant during a coherent processing interval (CPI). 

A point-scatterer assumption means the target may be modelled as an ensemble of M point scatterers with 
reflectivity coefficients  located in the far field of the radar. The range to the mth point-scatterer on the 
target with position vector , defined relative to O, can be approximated as 

  (2) 

in which  is the range vector to the mth scatterer,  is the radar range to O, local scatterer down range 
is 

  (3) 

And  is the unit vector along the radar LOS. Specifically,  in the  frame. 

The  frame is convenient for describing a target’s rotational motion, and has been used in traditional 
(small angle) ISAR imaging formulation. For radar tomography which exploits spatial diversity through 
wide changes of target aspect, a similar local target frame, here denoted as  , is more convenient. This 
frame is fixed with the target and shares the same x3-axis with  ; the two frames coincide only at a 
reference time . The  frame is convenient because its axes are aligned with those of the underlying  
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k-spaces; angles are also preserved across the  frame and the k-spaces, as will become evident in the 
following. 

Let    denote the simple transmit continuous waveform at a single frequency f, 
where only the slow time tk is involved; there are no pulses and hence no ‘fast time’ spanning a pulse. The 
slow-time index is , and we assume a total of K time samples in a CPI. The receive 
signal  is modelled as a delayed version of , 

 

 
(4) 

Here, we assume that quadrature down-conversion processing is perfectly accomplished by radar hardware; 
the carrier term has also been removed. The first factor in (4) accounts for translational motion; the second 
factor captures the target geometry and scattering reflectivities to be processed for imaging. 

Furthermore, we shall assume a linear translational motion model for the target, i.e. 

  (5) 

where  is the velocity, assumed known prior to DRT processing, and  is target range at a reference 
time . 

2.2 Cross-Range Bandwidth and Resolution 
Relative to , the local down range  in (4) can be explicitly expressed, to the second order in slow time, 
as 

 
 (6) 

Here, ,  are the cross range and range of a scatterer with index m in  at the reference time   
of the CPI with duration . As has been thoroughly discussed in [2], although  cannot be directly 
estimated with a zero-bandwith signal, the first-order term of (6) suggests that a cross-range bandwidth,   

  (7) 

may be defined, which can be used to estimate cross range . Target rotation thus generates an effective 
bandwidth for the cross-range dimension, as long as  , or more precisely the rotation angle  
is sufficiently small such that the first-order approximation of (6) is valid. This puts a stringent constraint on 

 of a few degrees, which is a common requirement in ISAR imaging, and hence a relatively small . 
Furthermore, the presence of the zeroth-order term , which is generally unknown at this stage, prevents an 
estimation of  directly from the time-domain signal. Nevertheless, Doppler tomography can be used to 
overcome the constraints and challenges. 

By performing a standard Fourier transform (over ) on a segmented CPI of the narrowband receive signal 
, a Doppler profile  can be formed, where zero Doppler ( ) corresponds 

to the centre of rotation at O (again assuming perfect translational motion compensation had been applied 
prior to this processing), and the associated Doppler resolution is 
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(8) 

All scatterers over the available range of  are ‘collapsed’ (‘projected’) onto the Doppler profile. Since the 
instantaneous cross-range of a scatterer is directly proportional to its (monostatic) Doppler frequency , 
namely 

 
 

(9) 

the magnitude of the Doppler profile, ,  with   denoting the (average) aspect angle for this 
CPI, represents a cross-range projection of the target’s reflectivity function. Taking a differential of (9), i.e. 

 , and using (8), we obtain a cross-range resolution of  

 
 

(10) 

This is the same form that (down) range resolution  is conventionally expressed in terms of spectral 
bandwidth B:   

2.3 Doppler Radar Tomography 
Once the required cross-range profiles are formed, the fundamental ‘Projection-Slice Theorem’ (PST) of 
radar tomography can be used for image formation, i.e. to estimate both  and  of all scatterers present in 
the signal. According to the PST, the Fourier transform  of projection  is a slice of the 2D FT 
of the target function at aspect angle ; by computing these 1D cross-range projections and assembling them 
in the frequency domain over sufficient extent of the target’s aspect, its reflectivity function (the target 
image) can be reconstructed by a standard 2D inverse FT operation.  

2.3.1 The Monostatic DRT Algorithm 

In practical applications, the algorithm to populate the support of the slow-time k-space is illustrated in Fig.2, 
which consists of the following steps: 

1. Data segmentation: the set of all N samples  in the received data block is segmented into L 
overlapping CPIs, , each of length K samples and with an overlap factor . These CPIs are 
also called ‘segmented CPIs’. Here,  and . The target 
aspect angle (relative to ) at the mid-point of such a segment is denoted as  ; 

2. Translational motion compensation (TMC): this is applied to each CPI, by multiplying the signal 
with a linear phase factor , to shift the Doppler line of known non-rotating components 
to zero Doppler frequency. Here,  is the target’s translational velocity as noted in (5), assumed to 
be known or estimated by other methods. A standard Fourier transform is then applied to all 
segments, with a circular shift to place the zero Doppler frequency at the centre of the spectrum. 
Denote the magnitude of the output as  

  (11) 

for the cross-range profiles. Accumulate all such cross-range profiles, along with the corresponding 
aspect angles , available from the data block.   
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Figure 2: An illustration of the algorithm for Doppler radar tomographic (DRT) imaging using the 
slow-time k-space. The ksy- and ksx axes describe components of ks as defined in (15) 

3. Populating the k-space: The spatial Fourier transform of , namely  

  (12) 

are then used as the ‘measurement samples’ at aspect angle  to populate the slow-time k-space. As 
the target rotates, the measurements ‘fan out’ as indicated in Fig.2. Note that the measurement 
population always starts close to the ksx-axis because  are cross-range profiles.  

4. Image inversion: The populated support of the k-space is applied to an inverse Fourier transform to 
yield the target image. Traditionally, the filtered back projection, or an interpolation onto a 
rectangular grid followed by a 2D inverse Fourier transform, could be applied [9], [10]. Here, we 
shall make use of the non-uniform Fast Fourier transform (NUFFT). 

2.3.2 Standard DRT 

‘Standard DRT’ refers to the case where the input cross-range profiles, as mathematically defined by (11), 
are Doppler migration free (DMF) free, and the rotation angle corresponding to each profile is within the 
linear limit. The DMF condition can be satisfied when the segmented CPI lengths are sufficiently short such 
that the nonlinear phase terms in (6) are negligible and hence compensation is not necessary, or when  is 
small. The former case is particularly sensitive for scatterers at larger radial distances from the centre of 
rotation, while the latter case applies more to scatterers sufficiently close to the centre of rotation whose 
Doppler frequencies are small and Doppler migration effects (if any) are also small. 

As derived in [11], the standard DRT constraints on CPI rotation angle is 

  (13) 

where   is an effective rotation angle required to induce a Doppler migration (DM) of 
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one bin,  is the ‘linear limit’, while DRT image resolution, in both range and cross range, is 

 
 

(14) 

Here,  is the maximum radial dimension of the target. Note that  and  are independent of rotation 
rate and signal sampling rate, but only on radar wavelength and the dimension of the target (through 
maximum radial dimension   to any scatterer).  is roughly 10 degrees; equations (13) and (14) can 
be used as a guide to predict the expected imaging performance or applicability of standard DRT for a 
specific radar wavelength and target size.  

‘Augmented DRT’ involves wider rotation angles and processing to compensate for nonlinear effects due to 
rotation, as discussed in the next Section. 

3.0 THE SLOW-TIME K-SPACE AND ITS AUGMENTATION 

While it is possible to formulate the problem and solution entirely in terms of the spatial frequency space of 
, we shall keep up with tradition and formulate it in terms of a ‘k-space’, with   

3.1 The Slow-Time k-Space 
In basic Fourier analysis, for signal with a pulse repetition interval PRI, the Doppler frequency extent of the 
signal is , which spans the interval . Analogously, from the spatial (cross-
range) resolution  as given in (10), the extent of spatial frequency  is , which 
symmetrically spans the interval . Making use of (7), the interval for  is thus 

 

as illustrated by the radial dashed lines in Fig.2. When forming the cross-range profile with the 
computationally efficient FFT, the number of samples in time domain and frequency domain are equal, to K. 
Hence, the (discretized) slow-time k-vectors  corresponding to each cross-range projection can be defined 
as 

 
 

(15) 

where  and  is the cross-range unit vector 
(perpendicular to ) along the -axis of the  frame.  

The slow-time k-space arises naturally out of DRT: its support (radial extent) is determined by the cross-
range bandwidth  and its populating samples are  given by (12); as the target rotates, the slow-time 
k-space support is swept out in fan-like shapes around the k-space origin. Also, for a given , the number of 

 points is a processing design parameter not necessarily fixed to K; its chosen value however would affect 
only the sidelobes of the impulse response, and hence image contrast, not image resolution. 

An important and useful characteristics of the slow-time k-space is it can be augmented. As implied by (7), 
 can be increased by using a wider rotation angle , at the cost of further processing to correct for the 

nonlinear terms in the phase function of (6). In Section III-B below, we discuss one typical technique to 
correct for the second-order term, i.e. linear chirp components; augmentation of the k-space is enabled by 
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using wider segmented CPIs such that linear chirps are sufficient to model the rotational motion of all point 
scatterers. 

Let us define an ‘augmentation factor’ as 

 

 
(16) 

where  and  denote the standard segmented CPI length and the corresponding rotation angle in the 
conventional linear limit of narrowband imaging. Then, according to (7) and (15), the cross-range bandwidth 

, the radius of the slow-time k-space, and hence DRT image resolution, will all be increased by a factor of 
. The augmentation of the slow-time k-space is conceptually illustrated in Fig.3. The DRT algorithm based 

on an augmented k-space is called augmented DRT. 

 

Figure 3: A conceptual illustration of the augmentation of the slow-time k-space. The circle 
indicates the boundary of support in standard DRT imaging. 

3.2 Augmented DRT with Orthogonal Matching Pursuit (OMP) 
This technique shares the same objective as the technique based on the fractional Fourier transform and S-
method, as reported in [10], but instead makes use of a popular tool in the more modern approach of sparse 
signal reconstruction: OMP. Again, TMC is assumed to have been perfectly processed prior to this 
processing. 

3.2.1 Sparse Representation 

With reference to (4) and (6), the segmented CPI signal is represented in vector form as 

  (17) 

where  is the dictionary matrix of size ;  is a length-  column vector of (complex-valued) atom 
coefficients; and  is a length-K column vector of noise and/or clutter components. The columns of   are the 
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chirp atoms, of the form 

 
 (18) 

where  and the parameters 

 
 

(19) 

respectively represent the Doppler frequency and chirp rate of a scatterer due to rotation, at reference time 
, which define the atom . Furthermore, let  and , or equivalently  and , be uniformly 

discretized by two vectors of expected or possible values, of lengths  and  respectively, then 
. 

The OMP algorithm itself is well-known (see [12] for example), is one of several sparse reconstruction 
techniques that could be used in this algorithm. 

3.2.2 The OMP-Based Augmented DRT Algorithm 

The augmented DRT algorithm is modified from standard DRT by simply lengthening the segmented (and 
overlapping) CPIs with an augmentation factor , as defined by (16); the target signal in each CPI can then 
be represented as a sum of linear chirp components. The aim is then to estimate such a representation and to 
correct for the chirps, i.e. focusing the range profile, before applying them to remaining steps of the DRT 
algorithm. OMP is one possible approach for this purpose.  

For each augmented CPI, suppose the output of the OMP processing is a (sparse) solution support 
 of size M with corresponding atoms  and coefficients , then a dechirped version 

for the segmented receive signal is 

 

 
(20) 

The right arrow  above denotes a replacement of the  atom with a corresponding single-tone 
function 

 
 (21) 

with Doppler frequency 

 
 

(22) 

so defined as the instantaneous frequency at  – the middle time of the segmented CPI. The operation  

  (23) 

then would give a focused cross-range projection for tomographic processing. The replacement of a chirp 
atom with a pure-tone atom at an appropriate time removes the usual spread in Doppler processing, hence the 
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focusing effect. 

The augmentation algorithm, applied to each CPI of the augmented DRT algorithm, can thus be summarized 
as follows. 

0. Initialize:  
a. define or select expected intervals of Doppler frequency  and chirp rate ;  
b. define the corresponding chirp atoms and set up the dictionary ;  
c. input segmented CPI data ; 

1. Compute the OMP-based sparse representation; 

2. Replace all chirp atoms in the sparse solution with single-tone sinusoid functions with Doppler 
frequency at the mid-point of the segmented CPI; 

3. Compute the focused cross-range profile  as given by (23). 

 

4.0 EXPERIMENTAL RESULTS 

 

Figure 4: An example of an antenna mounted on a robotic arm at the Mumma Radar Laboratory 
with the two vertical metallic rods secured to the rotating pedestal. 

4.1 Experimental Setup 
The datasets used in this work were collected in the Mumma Radar Laboratory at the University of Dayton, 
Ohio, USA. Although the aim of the study is narrowband imaging, a wideband waveform at X-band was 
used with stepped-frequency pulses between 8 GHz and 12 GHz, over 101 regular frequency steps. Only the 
measured data from one of the available discrete frequencies  was used to study narrowband tomographic 
radar imaging. 

The transmit and receive horn antennas were mounted on separate robotic arms which could be oriented and 
positioned with high precision. The measurements were conducted in a controlled laboratory environment 
with some radar absorbing material (RAM) reducing the radar reflections from the floor and walls. The 
experimental target consisted of two vertical metallic rods, separated by 19 cm (approximately), emulating 
two point scatterers which rotated around a vertical pedestal, as illustrated in Figure 4. The maximum radial 
distance is 11 cm. The antennas were kept stationary whilst the target was rotated through 360 degrees, at 
0.1-degree steps. At each angular step, the stepped-frequency waveform was transmitted and sampled, one 
sample for each frequency.  
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4.2 Emulation of a Rotating Target 

Target rotational motion, radar sampling rate, and other key signal processing parameters can be emulated 
from the stop-start measurements described above. While full theoretical details are explained in [11], the 
steps for the emulation may be described in the following. 

: we choose the lowest and highest frequencies available in this experiment, 8 and 12 GHz, 
corresponding to  or 2.5 cm. With  m,  deg or 19.3 deg 
respectively. We also choose  deg; the system is thus -limited and poor imaging 
performance can be expected from standard DRT; 

The condition for Doppler ambiguity free is ; PRF should be designed such that 
 – the angular sampling rate (in samp/rad) – is greater than   = 11.7 or 17.6 

by a factor as close to 1 as possible, which could ease hardware sampling rate requirement. 

The angular sampling interval of 0.1 degree per sample in the experiment translates to a  
samp/rad. Over  the chosen  value, 100 samples are available. To reduce computational cost 
while retaining a reasonable FFT length and satisfying the Doppler ambiguity free condition, we use 
a down sampling ratio of 3:1, leading to K = 33 samples per CPI, and 1 (samp/rad). 
This choice also satisfies the constraints of Doppler migration free of standard DRT and linear phase 
limits. 

Realistic values for PRF and  can also be chosen such that  = 191; this is however not necessary, 
and all essential parameters of the emulated system are set up for DRT processing.  

For each of the selected frequencies, an elliptic filter with a very narrow stop band is also applied to the 
signal as a pre-processing for clutter removal. Results are shown in Sections 4.3 and 4.4.  

4.3 Standard DRT Imaging 
To demonstrate k-space augmentation and the usefulness of sparse signal reconstruction, some typical results 
of standard DRT imaging is now shown. For the emulated system described above, Figure 5 shows a 
spectrogram of the signal at 8 GHz. The small value of  compared to  causes the target 
Doppler content to be confined to approximately only 9 of the 33 Doppler bins available. Figure 6 shows the 
corresponding slow-time k-space support and standard DRT image. We have used an overlapping factor  of 
0.99 in the segmentation step to provide a very smooth angular coverage of the k-space. However, the k-
space support is small, and as expected, standard DRT imaging performance is poor; there are not enough 
resolving pixels on the two scatterers (the metallic rods) for a clearer image. 

 
Figure 5: Spectrogram of emulated signal, standard DRT, for f = 8 GHz 
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Figure 6: The slow-time k-space support (left) and corresponding standard DRT image (right),  
at 8 GHz. 

When longer CPIs are used with the standard DRT algorithms, image blurring occurs. Suppose  as defined 
by (16) is set to 6, the Doppler resolution in the spectrogram of the signal becomes higher, as shown in 
Figure 7. When the corresponding cross-range profiles (with Doppler bin migration effects present) are 
applied to standard DRT, the resulting image is in Figure 8. 

 

Figure 7: Signal spectrogram with augmented CPIs, augmentation factor of 6, at 8 GHz. 

 

Figure 8: k-space support (left) and standard DRT image (right) with augmentation factor of 6, at 
8 GHz 

For a better insight into the electromagnetic scattering effects in this experiment, similar results using the 
highest frequency (12 GHz) available are shown in Figures 9 and 10. From Figures 7 and 9 it becomes 
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reasonably clear that in addition to direct (specular) scattering off the inner side of a metallic rod, creeping 
waves [13] around the rods are the most likely cause of the twin sinusoidal traces for each of the rods. The 
effects are clearly more pronounced at the shorter wavelength of 2.5 cm, which is more comparable to the 
rod diameter of approximately 2 cm. The double scattering effects are reflected in the ‘shadowed blobs’ in 
the DRT image. 

Note that image blurring in standard DRT imaging due to long CPIs occurs only in the azimuthal direction; 
image focusing is still generally achieved in the radial direction. 

4.4 Augmented DRT Imaging with OMP 

To apply OMP for image focusing, the dictionary   is set up with chirp atoms as defined in (18) and (19). 
Cross range x and range y are discretized over the interval  m, with a nominal spacing of  . As 
for the standard DRT demonstration, the two frequencies of 8 GHz (  cm) and 12 GHz (  cm)  
are used. Over the selected discretization interval, the number  of atoms is thus 1849 (for 8 GHz) or 4096 
(for 12 GHz).  

 

 

Figure 9: Signal spectrogram with augmented CPIs, augmentation factor of 6, at 12 GHz. 

 

 

Figure 10: k-space support (left) and standard DRT image (right) with augmentation factor of 6, 
at 12 GHz 
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The coefficient magnitude of the first 20 atoms extracted from the 8 GHz signal show a clear convergence, 
as shown in Figure 11. The spectrogram of the reconstructed and `compressed' signal is shown in Figure 12 
which clearly shows more resolvable sinusoidal traces compared to Figure 7. 

 

Figure 11: Magnitude of atom coefficients for first 20 atoms, shown for one in every 50 CPIs in 
the spectrogram, at 8 GHz. 

To reduce signal processing noise effects in the resulting image, a simple thresholding method can be used to 
control the number atoms to keep in the sparse representation: in each CPI, stop the OMP iteration when 
atom coefficient magnitude falls below 20% of the maximum magnitude, as an example. This criterion can 
also save on computational cost, as less atoms need to be extracted in the processing. An example is shown 
in Figure 13 for the 8 GHz signal. Compared to Figure 8, this is a clearly significantly more focused image. 

 

Figure 12: Spectrogram of reconstructed and OMP-focused signal with 20 atoms, at 8 GHz 
(compared to Fig.7) 
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Figure 13: k-space support (left) and OMP-focused image (right) using a 20 % coefficient 
magnitude threshold, 8 GHz 

For completeness, we also show results Figure 14 for the 12 GHz signal, which also resolve the scatterers 
significantly better using the OMP processing as compared to Figure 10 for standard DRT. The double 
scattering effects resulting in the ‘double blobs’ are also enhanced. 

 

Figure 14: k-space support (left) and OMP-focused image (right) using a 20 % coefficient 
magnitude threshold, 12 GHz 

4.5 The Off-Grid Problem in Target Imaging Based on Sparse Reconstruction 
In the above demonstration, the spatial space (x, y) is discretized over rather arbitrary windows, with a 
nominal spacing of half a radar wavelength, creating a discrete grid from which to form the dictionary . A 
major problem with this approach is a most likely certain mismatch with real target scatterers, which are not 
ideal point scatterers and may be located anywhere in a given volume of space. Even in the 2D 
approximation, real scattering centres may not fall exactly on any point of the dictionary grid. This results in 
the formation of multiple atoms with various coefficients, which can be expected to be in the neighbourhood 
of the real scatterer and whose linear sum approximate the real signal. In terms of image focusing, the 
formation may lead to noisy or blurry effects. 

The problem has been discussed by several authors, such as in [14,15], in terms of basis mismatch. More 
recently a couple of methods have been proposed directly for the application of target imaging. The first 
method reported in [16] is a post-processing exploiting the tendency of atoms to cluster around true 
scatterers. The second method in [17], called Parameter-Refined OMP (PROMP), proposes an improved 
version of the OMP by replacing the linear least square step in its algorithm with a nonlinear least square 
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processing. Demonstrations using these methods on real experimental data is however beyond the scope of 
the current paper.  

6.0 CONCLUDING REMARKS 

We have demonstrated with experimental data that high-resolution imaging of a rotating target using an 
ultra-narrowband radar is possible. The enabling signal processing technique is a combination of Doppler 
radar tomography and a sparse reconstruction technique such as OMP, while a unifying mathematical 
framework is based on the slow-time k-space.  

Acknowledgment: We sincerely thank Lorenzo Lo Monte and Nihad Alfaisali, and the Mumma 
Laboratory at University of Dayton, Ohio, USA, for collecting and providing the experimental radar data 
in May 2016. 
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